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Comprehensive verification/falsification of embedded software is challenging and often impossible mainly
due to the typical characteristics of embedded software, such as the use of global variables, reactive behaviors,
and its (soft or hard) real-time requirements, to name but a few. Abstraction is one of the major solutions to
this problem, but existing proven abstraction techniques are not effective in this domain as they are uniformly
applied to the entire program and often require a large number of refinements to find true alarms. This work
proposes a domain-specific solution for efficient property falsification based on the observation that embedded
software typically consists of a number of user-defined auxiliary functions, many of which may be loosely
coupled with the main control logic. Our approach selectively abstracts auxiliary functions using function
summaries synthesized by Programming-By-Example (PBE), which reduces falsification complexity as well as
the number of refinements. The drawbacks of using PBE-based function summaries, which are neither sound
nor complete, for abstraction are counteracted by symbolic alarm filtering and novel PBE-based refinements
for function summaries. We demonstrate that the proposed approach has comparable performance to the
state-of-the-art model checkers on SV-COMP benchmark programs and outperforms them on a set of typical
embedded software in terms of both falsification efficiency and scalability.
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1 INTRODUCTION
Embedded software is prevalent in our daily lives, controlling almost all electrical systems around
us, from small-scale devices such as smartwatches or pacemakers to large-scale devices such as
medical devices, automobiles, rail systems, and avionics. They are often safety-critical, and their
failure can be catastrophic, as we have witnessed more often than desired. So, naturally, rigorous
and comprehensive verification of embedded software is extremely important.
Decades of effort have been spent on comprehensive validation and verification of embedded

software using formal methods, dominantly using model-based development [10, 23, 37]. These
approaches formally model functional/non-functional requirements of embedded software and
validate the model by formally checking essential properties. The validated model can be used
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for code generation, test generation, or for both. The model-based approach has seen substantial
success in practice, especially in the automotive and avionics domains, but unfortunately, most
other domains are still unfamiliar with the technique and largely rely on code-based verification [38,
42, 50, 55].

Comprehensive verification/falsification of embedded software programs is challenging and often
impossible mainly due to the typical characteristics of embedded software: It (1) typically uses (a
great number of) global variables, which increases the coupling level and the verification complexity
of the program, (2) is reactive in terms of responding to external entities (users, hardware devices,
etc.), and (3) includes (soft or hard) real-time behavior, which often requires temporal properties
with an explicit timing concept. The complexity caused by these characteristics is beyond the
limitations of state-of-the-art verification capability.
Abstraction is perhaps the only solution to this problem, but existing proven abstraction tech-

niques [8, 14, 17, 24, 45, 52] are not effective in this domain as they are uniformly applied to the
entire program without considering those intrinsic characteristics, which often means that a large
number of refinements are necessary to find true alarms. For example, when verifying programs
with complex control structures, predicate abstraction [45] undergoes numerous iterations of
refinements if it starts with abstract models that are too coarse (i.e., minimal and imprecise). This
is not desirable in embedded software, where most behaviors are executed within an infinite loop,
requiring the exploration of a potentially infinite number of execution paths when checking a
property that can be verified or violated only after numerous iterations. In fact, the well-known
model checker CPAchecker [17] configured to use predicate abstraction with interpolants failed to
find a true alarm after performing 426 refinements over three days when applied to an elevator
controller program (see Section 5).

Based on these observations, we derived the following hypothesis: If, instead of abstracting the
entire program, only specific parts (e.g., functions) of the target program can be selectively abstracted
and refined, then the level of abstraction may be sufficient for verification/falsification efficiency
while the concrete parts can contribute to maintaining a high level of verification/falsification
precision. To validate our hypothesis, we propose Selective Abstraction and Refinement using Function
Summary (FS), an approximation of a function’s behavior, by leveraging Programming-By-Example
(PBE) [35]. With PBE, we synthesize FSs that are simple, accurate, and generalized from input-
output (I/O) examples to abstract auxiliary functions (detailed in Section 3.3) in the program. The
drawbacks of using PBE-based FSs, which are neither sound nor complete, for abstraction are
counteracted by symbolic alarm filtering and novel PBE-based refinements for FSs.
Fig. 1 shows the overall process of our approach: Given a target program and I/O examples of

functions defined in the program, we first identify auxiliary functions that are decoupled from global
variables as the first selection. These auxiliary functions are synthesized iteratively to construct
FSs aimed at low complexity and reasonable similarity (Definition 1 and 2 in Section 3.2) compared
to the original functions. The constructed FSs go through the second selection where they are
compared with each other in terms of similarity and complexity. Falsification for a property is
performed by bounded model checking (BMC), after replacing selected auxiliary functions with
FSs. If a counterexample that leads to a violation of the property is generated, then symbolic alarm
filtering (detailed in Section 4.1) checks whether a symbolic program path constructed from the
counterexample is feasible. If it is infeasible, we can be certain that this is due to the use of FSs
as they are the only abstracted parts, and thus we only need to refine the FSs from the infeasible
program path and invalid I/O pairs, which can guide the model checker to explore another program
path. This falsification process iterates using the refined FSs until a true alarm is identified.
We implemented the proposed approach named PBEAR (PBE-based Selective Abstraction and

Refinement) in a toolset for a proof of the concept, which uses DUET [44] for synthesizing FSs
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Fig. 1. Overall process of our approach.

and the CBMC [25] for falsification and SAT solving. The falsification ability of PBEAR was
evaluated in comparison with that of CBMC [25], CBMC-refine [20], and CPAchecker [17] over
16 SV-COMP benchmark programs [11] and three embedded software programs with 15 safety
properties. PBEAR showed competitive performance on the SV-COMP benchmark programs and
outperformed the others on three embedded software examples, reducing falsification time and
succeeding in falsifying 3 to 12 more properties than the other tools.

The major contributions of this paper are as follows:
• PBEAR is the first technique that efficiently falsifies properties of embedded software by using
PBE-based function summaries and selective abstraction. It provides criteria for selection of
function summaries.
• PBEAR provides a novel PBE-based refinement approach for function summaries using hints from
symbolic alarm filtering to ensure that the refined function summaries do not revisit infeasible
symbolic program paths already identified.
• An experimental evaluation on three embedded software programs with 15 safety properties

showed that PBEAR improves falsification efficiency and scalability.
The remainder of this paper is organized as follows: Section 2 shows a motivating example;

Section 3 describes details of PBE-based selective abstraction; Section 4 describes details of symbolic
alarm filtering and PBE-based FS refinement; Section 5 reports the experiment results; Section 6
discusses related work; and Section 7 concludes the paper with future work.

2 MOTIVATION
We illustrate our motivation with Fig. 2, an example of simplified code exhibiting major character-
istics of embedded software: (1) It operates as a reactive system with an infinite loop (lines 2–10);
(2) it uses the global variable speed; and (3) it has a safety property that involves multiple time
steps (lines 7–10). The main control logic invokes a few functions: read_sensor, which reads input
from an external sensor (line 3); process, which processes the input (lines 11–15); check, which
verifies whether speed and data are valid (lines 16–24); and update, which updates the value of
speed (lines 25–29). The property on line 10 specifies that the system shall reduce speed to below
50 within 10 time steps.
Verifying or falsifying this type of software and properties is challenging. The presence of

infinite loops with external interactions may indefinitely increase the search depth, the use of
global variables complicates this exploration as the temporal changes of their values must be traced
to identify true alarms, and properties involving time steps may need at least a minimum number
of loop iterations to explore in order to identify reasonable property violations.
This difficulty is not even made easier through lazy abstraction with interpolants [45], which is

one of the most common approaches in predicate abstraction, as 13 of the 15 predicate abstraction
tools in SV-COMP [11] are based on lazy abstraction with interpolation. It initially replaces each
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Fig. 2. Example of embedded control code.

predicate, a Boolean expression at a program location, with true, implying that any statement in
the control flow is executable regardless of guarding conditions. For example, in Fig. 3 (a), regardless
of the actual result of [speed>=50] at node 7, either node 8 or node 9 is reachable in the initial
search. Thus, in Fig. 3 (b), an infeasible error path where node 9 is executed is explored by a model
checker, producing a false alarm. To avoid exploring such infeasible paths, refinement is performed
by calculating new predicates using Craig interpolation [28]; e.g., [timer==0] from nodes 9 to
10, and the model checker searches for a new error path. However, as there still remain several
guard-free transitions with abstraction, we may witness a large number of counterexample-guided
abstraction refinement (CEGAR) [24] cycles. In fact, the example in Fig. 3 (a) costs 33 refinements
to find a true alarm using predicate abstraction.
On the other hand, Fig. 3 (c) illustrates our selective abstraction, which replaces only auxiliary

functions with FSs, leaving the main control logic as it is (these terminologies will be detailed in
Section 3.3). In the figure, process is replaced with a non-deterministic FS fs_process, which re-
turns a non-deterministic value within its output range, and check is replaced with an FS fs_check
synthesized by PBE, while main and update remain the same without applying abstractions. A
falsification attempt using model checking for the property at node 10 may generate a counterexam-
ple trace as illustrated in Fig. 3 (d). The trace consists of two parts. Firstly, one iteration is executed
from the left side to increase speed to 50 and timer to 1. Secondly, 9 iterations are executed
from the right side to increase timer until [timer==10] is true while keeping [speed==50] true.
As we did not apply abstractions to the main control logic (main and update), transitions in the
counterexample trace are concrete and valid except for those influenced by FSs fs_process(x)
and fs_check(a,b). Therefore, we only need to refine the FSs, not the whole program, thereby
reducing the cost for refinements. Even if Fig. 3 (d) is a false alarm because fs_check returns an
incorrect output value (check(50,0) should be 50, but it returned 0), our selective abstraction
shown in Fig.3 (c) results in successful falsification within one refinement of the FSs.

3 PBE-BASED SELECTIVE ABSTRACTION
3.1 Programming-By-Example (PBE)
PBE [5, 34, 35, 44] solvers take I/O examples as constraints to find a program that meets the given
examples by searching through an infinite set of candidate programs. PBE has been more widely
applied in various domains than other program synthesis techniques, such as those based on logical
specification [36] and program sketching [53], due to its ease of use. Representative application
examples include auto-completion of spreadsheets [48], automated mock object generation [29],
and automated program repair [43], to name but a few.

Syntax-Guided Synthesis (SyGuS) [3] aims to satisfy not only the given I/O examples (as semantic
constraints), but also syntactic constraints that restrict the search space of candidate programs
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Fig. 3. Difference between predicate abstraction and selective abstraction using FSs. (a) is the CFG of Fig. 2
divided into main control logic (dashed boxes) and auxiliary functions (dotted boxes). Solid and dotted edges
represent intra- and inter-procedural control flow edges, respectively. [expr] is a guarding condition to reach
the next node.
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Fig. 4. Overview of SyGuS-PBE.

by limiting available parameters, constants, and operators, to achieve a more efficient PBE. As
shown in Fig. 4, it takes a set of I/O constraints and syntactic constraints as input, and produces
a SyGuS-formatted program that meets the given I/O constraints using only the given syntactic
constraints. This program can be converted into a C program (e.g., ite is converted into if–else).

However, there are several limitations. Firstly, overfitting is an intrinsic issue, as it aims at finding
a program satisfying only given I/O constraints. We do not know whether the synthesized program
would produce a correct output for an input outside the I/O constraints. Secondly, the choice of
I/O constraints can greatly affect its performance. Our preliminary observations showed that if we
imposed too many arbitrary constraints, the complexity (code size) became too large or might not
be synthesized within a given time budget. Thirdly, SyGuS-PBE tools support only limited data
types, e.g., bit vector, integer, or string. Floats and dynamic objects are not generally supported [4].

3.2 Iterative Function Summary Synthesis
Due to its high accessibility, construction of FS using PBE seems quite attractive if we can mitigate
limitations of PBE for the falsification of embedded software. Our approach tries to mitigate the
overfitting problem and the complexity issue of PBE through iterative synthesis using similarity and
complexity measures. Our goal is to construct FSs with reasonable similarity and lower complexity
compared to the original functions. Our iterative process is shown in Fig. 5 and comprises four
steps: (1) I/O Constraint Selection selects an I/O pair ⟨𝑖, 𝑜⟩ from a set of I/O examples 𝑋 and adds it
to a set of I/O constraints 𝐶; (2) SyGuS-PBE generates a SyGuS-PBE specification by combining
semantic constraints𝐶 and syntactic constraints extracted from a target function 𝑓 and synthesizes
a FS 𝑓 ′ for 𝑓 ; (3) FS Evaluation evaluates 𝑓 ′ in terms of its complexity and similarity, and provides
feedback for the selection of new I/O constraints; (4) Output Range Analysis statically analyzes 𝑓
to identify its output range and annotates the final 𝑓 ′ with an assume statement that guards the
valid output range of 𝑓 ′. The process iterates over I/O Constraint Selection, SyGuS-PBE, and FS
Evaluation, until 𝑓 ′ achieves 100% accuracy (is a part of similarity) or timeout1.

3.2.1 The Iterative Process. The set of I/O examples 𝑋 2 is the collection of executions from the
target function 𝑓 , which is the source of inputs for the PBE solver as well as the oracle for the
evaluation of the generated FSs. In the beginning, a small subset of 𝑋 is randomly selected and is
added to the set of I/O constraints 𝐶 as semantic constraints. A SyGuS-PBE solver generates a FS
𝑓 ′ for 𝑓 using 𝐶 and syntactic constraints from 𝑓 whose quality is evaluated by FS Evaluation w.r.t.
its complexity and similarity.

Definition 1. The complexity of a FS 𝑓 ′, 𝑐𝑚𝑝𝑙𝑥 (𝑓 ′) is the number of branches used within 𝑓 ′.
1By setting a high accuracy goal, we can aim for the highest possible accuracy within a time budget (1 hour), even though
achieving 100% accuracy is rare, and timeouts are commonly encountered.
2We collect 𝑋 through random and (mainly) concolic execution of 𝑓 to cover various behaviors.
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Fig. 5. Process of iterative function summary synthesis.

Definition 2. The similarity of a FS 𝑓 ′ is measured by 𝑋 w.r.t. accuracy and output coverage:
• Accuracy (𝑎𝑐𝑐 (𝑓 ′)): The ratio of the number of times 𝑓 ′ returned the correct output value when
executed with a given input from the set of I/O examples 𝑋 .
• Output Coverage (𝑐𝑜𝑣 (𝑓 ′)): The ratio of the number of distinct output values 𝑓 ′ correctly returned
compared to the number of distinct output values in 𝑋 .

𝑎𝑐𝑐 (𝑓 ′) = |{𝑖 | 𝑓
′ (𝑖) = 𝑜, ⟨𝑖, 𝑜⟩ ∈ 𝑋 }|

|𝑋 | 𝑐𝑜𝑣 (𝑓 ′) = |{𝑜 | 𝑓
′ (𝑖) = 𝑜, ⟨𝑖, 𝑜⟩ ∈ 𝑋 }|
|{𝑜 | ⟨𝑖, 𝑜⟩ ∈ 𝑋 }|

In addition to accuracy, output coverage is a useful evaluation metric to avoid potential bias
from the output distribution of 𝑋 . For example, if 𝑋 contains 99 0s out of 100 as output values, a FS
𝑓 ′ ≡ 0 will achieve 99% accuracy, while its output coverage will only be 50%.
If 𝑓 ′ is evaluated with unsatisfactory quality, our iterative process tries to select more meaningful

I/O examples from 𝑋 to improve it, while refraining from selecting too many I/O examples, with
the following selection rules:
• Given a set of input values that revealed differences when applied to 𝑓 and 𝑓 ′, 𝐼𝑑𝑖 𝑓 𝑓 = {𝑖 | 𝑓 (𝑖) ≠

𝑓 ′ (𝑖), ⟨𝑖, 𝑜⟩ ∈ 𝑋 }, let 𝑂𝑑𝑖 𝑓 𝑓 = {𝑓 (𝑖) | 𝑖 ∈ 𝐼𝑑𝑖 𝑓 𝑓 } \ {𝑓 (𝑖) | 𝑓 (𝑖) = 𝑓 ′ (𝑖), ⟨𝑖, 𝑜⟩ ∈ 𝑋 } be a set of
output values that are not covered by 𝑓 ′.
• If 𝑓 ′ did not achieve 100% output coverage, the iterative process selects I/O examples from
{⟨𝑖, 𝑓 (𝑖)⟩ | 𝑖 ∈ 𝐼𝑑𝑖 𝑓 𝑓 , 𝑓 (𝑖) ∈ 𝑂𝑑𝑖 𝑓 𝑓 }, i.e., from those that were not covered by 𝑓 ′ (𝑖) when applied
to input values in 𝐼𝑑𝑖 𝑓 𝑓 .
• If 𝑓 ′ achieved 100% output coverage, we replace an I/O constraint in 𝐶 with a new one from
{⟨𝑖, 𝑓 (𝑖)⟩ | 𝑖 ∈ 𝐼𝑑𝑖 𝑓 𝑓 } to balance the number of I/O constraints.
After synthesizing a new FS 𝑓 ′ using the above selection rules, the current best FS 𝑓 ′

𝑏𝑒𝑠𝑡
is

updated with 𝑓 ′ if (1) 𝑐𝑚𝑝𝑙𝑥 (𝑓 ′) ≤ 𝑐𝑚𝑝𝑙𝑥 (𝑓 ), and (2) either 𝑐𝑜𝑣 (𝑓 ′) > 𝑐𝑜𝑣 (𝑓 ′
𝑏𝑒𝑠𝑡
) or 𝑐𝑜𝑣 (𝑓 ′) =

𝑐𝑜𝑣 (𝑓 ′
𝑏𝑒𝑠𝑡
)∧𝑎𝑐𝑐 (𝑓 ′) > 𝑎𝑐𝑐 (𝑓 ′

𝑏𝑒𝑠𝑡
). We put higher priority on 𝑐𝑜𝑣 (𝑓 ′

𝑏𝑒𝑠𝑡
) to 𝑎𝑐𝑐 (𝑓 ′

𝑏𝑒𝑠𝑡
) when comparing

similarity. We choose this strategy mainly because auxiliary functions used in embedded software
tend to have limited output ranges, and thus, it is easier to achieve.

3.2.2 Output Range Analysis and FS Annotation. At the end of the iterative process, Output Range
Analysis is conducted to guard the valid output range of 𝑓 ′ because PBE may synthesize FSs with
unreasonable output ranges by overfitting the given examples. To give an extreme case: A FS
fs_process(x) ≡ x for process (shown in Fig. 2) with one I/O constraint ⟨{x ↦→ 0}, 0⟩ is may be
synthesized. Note that fs_process(x) has 100% accuracy and output coverage according to our
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metric. However, its output varies from MAX_INT to MIN_INT while process’s output values
range from 0 to 2. To guard the valid output range for FSs, we employ the static value range analyzer
EVA [22], an extension of Frama-C [31], to compute the output ranges of the target function. In Fig.
3 (c), the assume statement3 in fs_check is the result of applying EVA.

3.3 Selective Abstraction
We decide on the functions to be abstracted by distinguishing auxiliary functions from the main
control logic in a program. The main control logic has a significant impact on the entire program,
and thus, applying aggressive abstraction is not recommended. As an illustration, consider the
function update in Fig. 2, which updates the global variable speed, whose values have a direct
impact on the transition condition from line 7 to line 8 or to line 9, and thus on the satisfaction of
the property in line 10. We classify update as a component of the main control logic.

3.3.1 Identifying Auxiliary Functions. We start from basic terminologies used in program analysis.

Definition 3. Terminologies
(1) Control Flow Graph: Given a function 𝑓 , a control flow graph (CFG) 𝐺 𝑓 = (𝑁𝑓 , 𝐸𝑓 , 𝑠𝑓 ,𝑇𝑓 ) is

a directed graph in which 𝑁𝑓 is a set of nodes that represent statements of 𝑓 , 𝐸𝑓 is a set of
edges that represent control flow between nodes, 𝑠𝑓 is a unique entry node, and 𝑇𝑓 is a set of
end nodes.

(2) Def-Use: Given a CFG 𝐺 𝑓 and a node 𝑛 ∈ 𝑁𝑓 , 𝑑𝑒 𝑓 (𝑛) is the set of variables defined (updated)
at 𝑛, and 𝑢𝑠𝑒 (𝑛) is the set of variables used at 𝑛.

(3) Data Dependency: A node 𝑛 is data-dependent on node𝑚 (i.e.,𝑚 ∈ 𝑑𝑑 (𝑛)) if there exists a
variable 𝑣 such that 𝑣 ∈ 𝑑𝑒 𝑓 (𝑚) ∩ 𝑢𝑠𝑒 (𝑛), and if there exists a path 𝜋 from𝑚 to 𝑛 such that
for every node𝑚′ ∈ 𝜋 − {𝑚,𝑛} and 𝑣 ∉ 𝑑𝑒 𝑓 (𝑚′) [49].

For example, the CFGs of each function in Fig. 2 are illustrated in Fig. 3 (a). Node 3 ∈ 𝑑𝑑 (4) as
in ∈ 𝑑𝑒 𝑓 (3) ∩ 𝑢𝑠𝑒 (4), and there is a path from node 3 to 4 without interleaving definitions.

Definition 4. Auxiliary Functions. Let 𝐼𝑓 be a set of input variables and 𝑂 𝑓 be a set of output
variables for a function 𝑓 . We say 𝑓 is an auxiliary function if

(1) 𝐼𝑓 ≠ ∅ and 𝑂 𝑓 ≠ ∅, and
(2) there is no global variable in 𝑂 𝑓 .

The condition specified in Definition 4 (1) suggests that 𝑓 should have input and output variables.
This condition is necessary to generate a SyGuS-PBE specification as PBE requires I/O relations as
semantic constraints. Here, 𝐼𝑓 consists of formal parameters, global variables used within 𝑓 , and
variables defined by external function calls (read_sensor()). In Fig. 2, for example, variables 𝑎
and 𝑏 are the input variables of check as they are formal parameters. 𝑂 𝑓 consists of a temporary
variable for the return value of 𝑓 and global variables4 whose values are defined within 𝑓 . The
condition (2) excludes any functions updating global variables from being auxiliary functions.
Functions main and update are not auxiliary functions because they update the global variable
speed. Thus, auxiliary functions in Fig. 2 are process and check.
All auxiliary functions are candidates for PBE-based FSs, except when they are only invoked

deterministically or independently. We define them using the notion of function call context.

Definition 5. Function Call Context. Let 𝑓 be a function call for a function 𝑓 with a set of actual
parameters 𝐴 invoked at a node 𝑛𝑓 , then its call context 𝑐𝑡𝑥 (𝑓 ) is recursively defined as
3assume(expr) is a macro of if(!expr) exit(0);.
4We note that pointer variables are treated as global variables.
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(1) 𝑐𝑡𝑥0 (𝑓 ) = 𝑑𝑑 (𝑛𝑓 , 𝐼𝑓 [𝐴/𝐹 ]) ∪ {𝑛𝑓 }
(2) 𝑐𝑡𝑥𝑖 (𝑓 ) = {𝑚 | 𝑚 ∈ 𝑑𝑑 (𝑛), 𝑛 ∈ 𝑐𝑡𝑥𝑖−1 (𝑓 )} ∪ 𝑐𝑡𝑥𝑖−1 (𝑓 ),

where 𝑑𝑑 (𝑛𝑓 , 𝐼𝑓 [𝐴/𝐹 ]) is a set of nodes on which 𝑛𝑓 is data-dependent w.r.t a set of variables
𝐼𝑓 [𝐴/𝐹 ], which represents the replacement of the formal parameters 𝐹 within 𝐼𝑓 with the actual
parameters 𝐴 within 𝑓 .

The function call context 𝑐𝑡𝑥 is the fixed point of 𝑐𝑡𝑥𝑖 , which means the set of nodes that con-
tributed to determining the input values of 𝑓 . For example, the function call check(speed,data)
at line 6 in Fig. 2 has the call context 𝑐𝑡𝑥 = {3, 4, 6, 26, 28, 29}, which is defined by 𝑐𝑡𝑥0 =

𝑑𝑑 (6, {speed, data}) ∪ {6} = {4, 6, 26, 28, 29} and 𝑐𝑡𝑥1 = {3 ∈ 𝑑𝑑 (4)} ∪ 𝑐𝑡𝑥0.
Definition 6. Deterministic Function Calls. A function call 𝑓 is deterministic if there is no node
𝑛 ∈ 𝑐𝑡𝑥 (𝑓 ) such that 𝑛 uses free variables, where a free variable means a variable whose values are
assigned by external objects, e.g., user inputs and external functions.

We do not replace any deterministic function calls with FS calls because there is little room for
abstraction. The function call check(0,0) at line 1 in Fig. 2 is deterministic because there is no
reference to free variables in its call context, but check(speed,data) at line 5 can be replaced with
its PBE-based FS call because its function call context contains node 4, which uses a free variable 𝑖𝑛.

Definition 7. Independent Function Calls. A function call 𝑓 is independent if 𝑓 is not deterministic,
and there is no node 𝑛 outside of 𝑓 and 𝑐𝑡𝑥 (𝑓 ) such that 𝑛 uses a variable defined in 𝑐𝑡𝑥 (𝑓 ).
If a function call is independent, we can freely explore the input space of the function call

without affecting the other parts of the program, thereby speeding up the falsification process
using non-determinism without necessarily constructing PBE-based FSs. Therefore, we abstract
independent function calls with non-deterministic FSs, which are constructed by (1) assigning
a non-deterministic value using function nondet() and (2) guarding the output values with an
output range analysis using EVA [22]. As an illustration, Fig. 3 (c) shows an non-deterministic FS
for the function process that non-deterministically returns 0, 1, or 2. Also, there is no concept of
accuracy in the non-deterministic FS, and its complexity is always 0.

3.3.2 FS Selection on Target Program. We perform PBE-based FS construction for all the auxiliary
functions, and produce a set of FSs 𝐹 ′ = {𝑓 ′, 𝑔′, . . . } for the target program 𝑃 , from which the best
subset 𝑆 ′

𝑏𝑒𝑠𝑡
⊂ 𝐹 ′ is selected by scoring each subset of FSs.

Scoring is designed with three critical factors to consider: (1) Complexity, as FSs with lower
complexity than their original functions can reduce falsification cost; (2) Accuracy, as FSs with
higher accuracy are less likely to generate false alarms; and (3) Output Coverage, as FSs with higher
output coverage are more effective in falsification.
We also consider the number of times each function is invoked within 𝑃 because even though

a FS 𝑓 ′ for 𝑓 has lower complexity gain than another FS 𝑔′ for 𝑔, i.e., 𝑐𝑚𝑝𝑙𝑥 (𝑓 ) − 𝑐𝑚𝑝𝑙𝑥 (𝑓 ′) <
𝑐𝑚𝑝𝑙𝑥 (𝑔) − 𝑐𝑚𝑝𝑙𝑥 (𝑔′), using 𝑓 ′ for abstracting 𝑓 may result in more overall gain if 𝑓 is called more
often than 𝑔 within 𝑃 . Thus, we define our scoring function for each subset of FSs 𝑆 ′ as

𝑠𝑐𝑜𝑟𝑒 (𝑆 ′) = 𝛼 · (1 − norm(𝑐𝑚𝑝𝑙𝑥 (𝑃𝑆 ′
𝑘
))) + 𝛽 · norm(𝑎𝑐𝑐 (𝑃𝑆 ′

𝑘
)) + 𝛾 · norm(𝑐𝑜𝑣 (𝑃𝑆 ′

𝑘
)),

where 𝑃𝑆
′

𝑘
is 𝑃 whose loops are unrolled 𝑘 times after substituting 𝑆 ′, and norm is a min-max

normalization to consider complexity, accuracy, and output coverage on the same scale. 𝛼 , 𝛽 , and
𝛾 are adjustable constants (and will be assigned in Section 5.3). We now break down these three
elements:

𝑐𝑚𝑝𝑙𝑥 (𝑓 ) = |𝐵(𝑓 ) | +
∑︁

𝑔∈𝑑𝑜𝑤𝑛 (𝑓 )
𝑐𝑚𝑝𝑙𝑥 (𝑔)
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𝑎𝑐𝑐 (𝑃𝑆 ′
𝑘
) =

∑
𝑓 ′∈𝑆 ′ 𝑎𝑐𝑐 (𝑓 ′)· | 𝑐𝑎𝑙𝑙 (𝑓 ′, 𝑃𝑆

′

𝑘
) |∑

𝑓 ′∈𝑆 ′ | 𝑐𝑎𝑙𝑙 (𝑓 ′, 𝑃𝑆
′

𝑘
) |

𝑐𝑜𝑣 (𝑃𝑆 ′
𝑘
) =

∑
𝑓 ′∈𝑆 ′ 𝑐𝑜𝑣 (𝑓 ′)· | 𝑐𝑎𝑙𝑙 (𝑓 ′, 𝑃𝑆

′

𝑘
) |∑

𝑓 ′∈𝑆 ′ | 𝑐𝑎𝑙𝑙 (𝑓 ′, 𝑃𝑆
′

𝑘
) |

,

where 𝐵(𝑓 ) is a set of branches in 𝑓 , 𝑑𝑜𝑤𝑛(𝑓 ) is a set of function calls invoked in 𝑓 , and 𝑐𝑎𝑙𝑙 (𝑓 ′, 𝑃𝑆 ′
𝑘
)

is a set of function calls for 𝑓 ′ in 𝑃𝑆
′

𝑘
. 𝑐𝑚𝑝𝑙𝑥 (𝑓 ) is the sum of all branches in 𝑓 and in functions

called by 𝑓 , and thus, 𝑐𝑚𝑝𝑙𝑥 (𝑃𝑆 ′
𝑘
) ≡ 𝑐𝑚𝑝𝑙𝑥 (main) for the entry function of 𝑃𝑆 ′

𝑘
main. 𝑎𝑐𝑐 (𝑃𝑆 ′

𝑘
) (and

𝑐𝑜𝑣 (𝑃𝑆 ′
𝑘
)) are defined as the sum of the products of each 𝑓 ′’s invocation count and its corresponding

accuracy (and output coverage), divided by the total FS invocation count within 𝑃𝑆
′

𝑘
.

4 COUNTEREXAMPLE-GUIDED ALARM FILTERING AND REFINEMENT

Fig. 6. Difference between the baseline of CEGAR process and our improved process.

After we abstract a target program 𝑃 into an abstracted program 𝑃 ′ using selective abstraction, we
employ a bounded model checker to falsify a property of 𝑃 within a bound 𝑘 . However, falsification
using selective abstraction may produce false alarms, as illustrated in Fig. 3 (d). Identification and
removal of false alarms are critical factors in efficient falsification. We address this issue using
CEGAR [24], which is specially designed for the efficient use of PBE.

A baseline for PBE-based FS refinement, following the well-known CEGAR approach, is shown
in Fig. 6 (a). Given a counterexample trace 𝜏 generated from model checking 𝑃 ′, which is abstracted
by a PBE-based FS 𝑓 ′ for a function 𝑓 , it performs concrete alarm filtering, which checks whether
the output value of 𝑓 ′ (i.e., 𝑓 ′ (𝑖) = 𝑜 ′) in 𝜏 is the same as that of 𝑓 (i.e., 𝑓 (𝑖) = 𝑜). If not (i.e., 𝑜 ≠ 𝑜 ′),
the corrected I/O pair ⟨𝑖, 𝑜⟩ in 𝜏 is used to refine 𝑓 ′ into 𝑓 ′′.
However, there are a couple of drawbacks to this baseline. Firstly, concrete alarm filtering only

checks FS invocations in a concrete execution trace (computed by a corresponding program input)
and might miss the opportunity to find true alarms with different inputs within the same path
condition. For example, suppose a function 𝑓 is replaced with its FS 𝑓 ′, where 𝑓 (1) = 0, 𝑓 ′ (1) = 0,
𝑓 (2) = 1, and 𝑓 ′ (2) = 0, in a program fragment [int x; assert(𝑓 ′(x)!=0);]. Then, there are
two input values x = 1 and x = 2 that lead to the assertion failure in the same path, but the case
with x = 2 is a false alarm. Secondly, PBE-based FS refinement does not ensure what CEGAR-
based refinement approaches, such as interpolation-based refinement, do: avoiding re-exploration
of previously explored infeasible paths. Though the refined FS guarantees that a specific set of
I/O examples is satisfied, it can still contain other incorrect behaviors that lead to exploring the
previously identified infeasible paths.
Thus, we improve the baseline process by employing symbolic alarm filtering [40] to achieve

efficient true/false alarm identification as well as effective refinements of FSs with SAT solving the
feasibility of symbolic program paths constructed from counterexample traces.
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Fig. 7. Snippet of counterexample trace and path program for Fig. 3 (d).

4.1 Symbolic Alarm Filtering
In our context, a counterexample trace 𝜏 = ⟨𝑎1, ..., 𝑎𝑛⟩ is a sequence of variable assignments
that leads to a violation of a given property 𝜓 . Fig. 7 (a) shows a snippet of a counterexample
trace generated from model checking 𝑃 ′ illustrated in Fig. 3 (c); in each variable assignment, we
annotate its corresponding original statement. Variable ret at lines 4 and 13 is a temporary variable
containing the return value of FS fs_check. Empty spaces in lines 5, 7, 14, 15, and 17 exist because
they are branches or assertions, so there are no assignments.
From the counterexample trace 𝜏 , we construct a path program 𝑃𝜏 [9], a finite path through 𝑃 .

Fig. 7 (b) illustrates a snippet of 𝑃𝜏 from Fig. 7 (a), where assignment statements are reverted from
their corresponding variable assignments in 𝜏 , assume statements represent the particular branches
taken (particularly, we consider that the violated assertion at line 17 is a branch taken as false), and
check_1 and update_1 are defined to reflect each execution path after their invocation, respectively.
To construct 𝑃𝜏 from 𝜏 , we instrument each statement in 𝑃 ′ (specifically, we instrument FS call
statements into their original function call statements) and execute 𝑃 ′ with the program input
extracted from 𝜏 . Note that the FS calls at lines 3, 4, 12, and 13 are reverted to the original function
calls in order to check the feasibility in the original program.

After that, symbolic alarm filtering checks whether there is a program input that reaches the end
of 𝑃𝜏 (the program point after the last assume statement), which is computed by a SAT solver. If
we find such program input, though the execution trace may be different from 𝜏 , it is a true alarm.
Otherwise, we conclude that 𝜏 is spurious (false alarm), and 𝑃𝜏 is infeasible in the original program.
Symbolic alarm filtering allows us to check the feasibility of a program path by considering all
possible program inputs along that path, whereas concrete alarm filtering does not.

For example, concrete alarm filtering only checks whether FS invocations in Fig. 7 (a) are incorrect.
fs_check(50,0) at line 13 returned an invalid output, thus Fig. 7 (a) is a false alarm. On the other
hand, symbolic alarm filtering can determine that Fig. 7 (b) is infeasible, as line 27 within the function
update_1 invoked at line 6 constrains the value of speed to be 50, and there is no opportunity of
returning 0 from check(50,data) at line 13, even though data can be freely determined from 0 to
2 as the process call at line 12 is independent. Therefore, the assume statement at line 14 cannot
be satisfied, and thus, the end point of 𝑃𝜏 cannot be reached.
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Algorithm 1 Improved PBE-based Function Summary Refinement
1: procedure refine(𝑓 : original function, 𝑓 ′: function summary, 𝜏 : counterexample trace, 𝑃𝜏 : infeasible

path program)
2: 𝐴← 𝐴 ∪ {𝑃𝜏 }; // accumulating infeasible path program
3: 𝑅 ← correct(𝑓 , 𝑓 ′, 𝜏) // refining I/O constraints
4: SAT← true;
5: while SAT == true do
6: 𝐶 ← 𝐶 ∪ 𝑅; // existing I/O constraints
7: 𝑓 ′′ ← runPBE(𝐶); // PBE-based FS refinement
8: SAT← false; // UNSAT
9: for each 𝑃𝜏 ∈ 𝐴 do
10: if (𝜏 ′ ← checkSAT(𝑃𝜏 [𝑓 ′′/𝑓 ])) ≠ ∅ then
11: 𝑅 ← 𝑅 ∪ correct(𝑓 , 𝑓 ′′, 𝜏 ′);
12: SAT← true;
13: return 𝑓 ′′

4.2 PBE-based Function Summary Refinement with SAT Solving
As we have abstracted only auxiliary functions, false alarms must inevitably arise from inaccurate
FSs, which is unavoidable when using PBE. Therefore, we focus on the refinement of FS by imposing
more I/O constraints identified in the spurious counterexample trace 𝜏 . Our improved PBE-based
FS refinement approach (Fig. 6 (b)) uses a path program 𝑃𝜏 found to be infeasible through symbolic
alarm filtering as well as the I/O information identified from 𝜏 . It first finds the incorrect I/O pair
⟨𝑖, 𝑜 ′⟩ from 𝜏 for each FS 𝑓 ′ and corrects it to the valid I/O pair ⟨𝑖, 𝑜⟩, where 𝑓 (𝑖) = 𝑜 . Then it
re-synthesizes 𝑓 ′ to 𝑓 ′′ by adding the valid I/O pair to the existing I/O constraints 𝐶 .
This refined FS 𝑓 ′′ guarantees that correct output is produced for the given 𝑖 , which may

be enough for concrete alarm filtering and refinements. However, it does not guarantee that a
counterexample generated from checking the program with 𝑓 ′′ will not produce the same path
program 𝑃𝜏 , with a high risk of having spurious cycles of false alarm filtering. This is because the
refined 𝑓 ′′ might be a completely different program code than the previous 𝑓 ′. Thus, there is a
possibility of re-exploring previously explored infeasible paths when replacing 𝑓 ′ with 𝑓 ′′ if we do
not use the path information identified from symbolic false alarm filtering for the refinements.

Our improved refinement process removes this potential risk by rechecking the feasibility of 𝑃𝜏
after replacing the original function 𝑓 with 𝑓 ′′. Note that we have already proved using symbolic
alarm filtering that 𝑃𝜏 is infeasible under arbitrary program inputs. Therefore, if it turns out to be
feasible when using 𝑓 ′′, the reason must be that 𝑓 ′′ is still producing an incorrect output value (for
input values different from 𝑖). Our refinement process uses this information to further refine 𝑓 ′′

before using it for the falsification of the program.
Algorithm 1 is a pseudo code of our improved FS refinements, assuming that a single FS is used

for the sake of simplicity; given an original function 𝑓 , its FS 𝑓 ′, a counterexample trace 𝜏 , and an
infeasible path program 𝑃𝜏 for 𝜏 , the algorithm
(1) accumulates the infeasible path program 𝑃𝜏 into a set 𝐴 (line 2),
(2) collects the wrong I/O pairs of 𝑓 ′ invoked in 𝜏 and corrects these pairs by executing 𝑓

(correct). These corrected pairs are added to 𝑅, the set of refining I/O constraints (line 3);
(3) updates the set of I/O constraints 𝐶 = 𝐶 ∪ 𝑅 that was used to synthesize 𝑓 ′ (line 6);
(4) refines 𝑓 ′ into 𝑓 ′′ using the PBE solver (runPBE) with the updated 𝐶 (line 7);
(5) checks whether 𝑓 ′′ makes any infeasible path 𝑃𝜏 ∈ 𝐴 feasible (checkSAT) after replacing 𝑓

with 𝑓 ′′ in each 𝑃𝜏 , (lines 9 and 10);
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(a) if the replaced path program is feasible (SAT), extracts the incorrect I/O pairs from its
witness 𝜏 ′ and adds its corrected I/O to 𝑅 (line 11);

(6) repeats steps (3)–(5) until all checking 𝑃𝜏 is UNSAT; and
(7) returns 𝑓 ′′ if all the path programs in 𝐴 are infeasible when replaced with 𝑓 ′′.

Example 1. Refinement of fs_check
(1) Collect and correct the wrong I/O pair ⟨{a ↦→ 50, b ↦→ 0}, 0⟩ from Fig. 7 (a) to ⟨{a ↦→ 50, b ↦→

0}, 50⟩ by executing check(50,0).
(2) Suppose that fs_check was synthesized by the set of I/O constraints 𝐶 in Figure 4. Then

𝐶 = 𝐶 ∪ {⟨{a ↦→ 50, b ↦→ 0}, 50⟩}, thus fs_check is refined into fs_check(a, b) ≡ if b <

0 then − b else a − b.
(3) Check whether the refined fs_check still reaches the end of the infeasible 𝑃𝜏 (Fig. 7 (b)) by

replacing check with fs_check. Fortunately, even though another wrong I/O pair ⟨{a ↦→
50, b ↦→ 1}, 49⟩ still exists, it does not make the infeasible 𝑃𝜏 feasible.

(4) Return the refined fs_check, which guides the model checker to explore another path.

5 EXPERIMENTS
We implemented our approach named PBEAR (PBE-based SelectiveAbstraction andRefinement) in
Java, using the concolic testing tool CROWN [54] for collecting I/O examples, the SyGuS-PBE solver
DUET5 [44] for synthesizing FSs, the static value analyzer Frama-C EVA [22] for guarding the output
value range of FSs, and the bounded model checker CBMC [25] for property falsification and SAT
solving. Static analysis such as def-use analysis was performed on the source code pre-processed
by CBMC.

5.1 ResearchQuestions
RQ1. Falsification efficiency of PBEAR: How fast does PBEAR find true alarms, or how much
less memory does PBEAR use, compared to state-of-the-art abstraction techniques?

For RQ1, we compared PBEAR with:
• CBMC (v5.43) [25]: The baseline (PBEAR also uses CBMC v5.43).
• CBMC-refine (v5.43) [20]: CBMC with SAT-based abstraction. It abstracts floating-point formulas.
We chose it due to the presence of several float-typed expressions in our target programs.
• CPAchecker (v2.1) [17]: The winner of FalsificationOverall in SV-COMP 2022 [11]. We configured

it to use lazy predicate abstraction with Craig interpolants.
RQ2. Effectiveness of our improved CEGAR process: How much time is saved through our
improved CEGAR process compared to the baseline process?

For RQ2, we implemented PBEARb, which is a baseline of PBEAR that follows Fig. 6 (a).
RQ3. Effectiveness of using output coverage for FS synthesis and selection: Does PBEAR
effectively identify violations by using output coverage for FS synthesis and selection?

For RQ3, we implemented PBEAR-cov, which is a variant of PBEAR that synthesizes and selects
FSs without considering output coverage, prioritizing accuracy instead. In comparison to PBEAR,
there is no replacement of I/O constraints in the I/O constraint selection strategy for PBEAR-cov.

5.2 Target Programs and Properties
We used two sets of programs for our experiments: the SV-COMP 2022 benchmarks [11] for fair
comparison of PBEAR with those tools known to be the most efficient on the benchmarks, and three
typical embedded software with 15 safety properties for evaluating the performance of PBEAR.
5Any other SyGuS-PBE tools can be applied, without the need to specifically use DUET.
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5.2.1 SV-COMP Benchmarks. We selected 6 categories from the SV-COMP benchmarks and chose 2
or 3 target programs per category (a total of 16 target programs) that share the same set of functions
within their respective categories (to reuse synthesized FSs) and have at least one auxiliary function
with ReachSafety property (i.e., checking reachability of an error state). While 6 out of the 16 target
programs are derived from SystemC [19] programs, which are reactive, the others do not show any
characteristics of embedded software. Therefore, they may not be the best choice for demonstrating
the merits of PBEAR, but we intend to show that PBEAR also performs as well as other tools on
general programs6.

5.2.2 Embedded Software Examples. As PBEAR is specifically designed for efficient falsification
of embedded software, we chose three typical embedded programs in the domains of automotive,
hardware control, and robotics to evaluate its performance.
P1. An object-following automotive multitasking program [30],
P2. an elevator controller program [27], and
P3. a garbage collector robot program [21].
Each program is written in about 1,000 (P1), 900 (P2), and 600 (P3) lines of code in C. Though

their sizes in terms of lines of code are smaller compared to the SV-COMP benchmarks, they
operate within an infinite loop using multiple global variables and external inputs, showing typical
characteristics of embedded software. Furthermore, safety or liveness properties for these programs
require exploring multiple time steps, which increases their verification complexity. Table 1 is a
partial list of properties for each program we used for experiments7. These properties are specified
as monitoring code in the target program that is checked at the end of every infinite loop iteration.

Table 1. Examples of properties for each program.

𝑃 𝜓 Description

P1 𝜓12 It shall not suddenly stop at a speed less than 10 when it drives at a speed exceeding 70.
𝜓16 It shall be backed up within 10 iterations if the distance from the car in front is 84 or more.

P2 𝜓22 It shall stop at that floor within 600 iterations when the UP_BUTTON is pressed on any floor.
𝜓24 It shall stop at the target floor within 600 iterations when any FLOOR_BUTTON is pressed in the elevator.

P3 𝜓31 It shall reach all 10 states (at least 10 iterations are required).
𝜓32 It shall throw that garbage away within 15 iterations when it captures any garbage.

5.3 PBEAR Setup
• Collection of I/O Examples: We collected up to 10,000 I/O examples for each auxiliary function

using the concolic testing tool CROWN [54] and mutating the test inputs generated by the tool.
As CROWN generates test inputs for maximum branch coverage, the generated inputs may
initiate diverse behaviors of the auxiliary functions.
• Options for FS Synthesis: We used DUET [44] for FS synthesis with the timeout for each DUET

run set to 300 seconds, and the total timeout for the iterative synthesis set to 1 hour. We extended
the timeout for each DUET run to 600 seconds during PBE-based FS refinement, intended to help
DUET address additional I/O constraints.
• FS Evaluation: We scored subsets of FSs with at most five PBE-based FSs each due to their vast

number of possible combinations. We selected the highest-scoring subset of FSs for replacement

6In fact, it was the best choice we could make because of the lack of benchmarks in embedded software.
7These are artificial properties imitating functional requirements we may encounter in practice.
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by increasing the bound 𝑘 (𝑘 = 1, 2, 4, ...) until the score rankings (𝑠𝑐𝑜𝑟𝑒 (𝑃𝑆 ′
𝑘
)) from 1st to 5th

place stabilized. We assigned 𝛼 = 2, 𝛽 = 1, and 𝛾 = 3, as we prefer high output coverage.
• Falsification: We started BMC with a bound 𝑘 = 10 and incremented it by 10 for each run up to
𝑘 = 1000. This setup also aligned with CBMC and CBMC-refine.
• Reuse of FSs: We reused FSs for the same function because, in our target programs within the
same category in SV-COMP, multiple auxiliary functions are identical. We also used the same
FSs when falsifying different properties for each embedded software.

All experiments were performed on a 3.3-GHz Intel Xeon Gold 6234 CPUwith 200GB RAM, running
the Ubuntu 20.04 64-bit version. Each experiment was terminated if it timed out, encountered an
out-of-memory situation or runtime errors, or found a true alarm.
We note that the time and memory usages for selective abstraction were not considered in our

measurement because it needs to be conducted once before the iterative falsification process and
can be reused for checking multiple properties.

5.4 RQ1. Falsification Efficiency of PBEAR

Table 2. Property falsification results on SV-COMP benchmarks.

𝑃 |𝐹 | PBEAR CBMC CBMC-refine CPAchecker
|𝑆 ′ | #R 𝑇 (s) 𝑀(GB) 𝑉 ? 𝑇 (s) 𝑀(GB) 𝑉 ? #R 𝑇 (s) 𝑀(GB) 𝑉 ? #R 𝑇 (s) 𝑀(GB) 𝑉 ?

gcd_1+newton_1_6
1

1 2 79.0 0.05 O 7.0 0.07 O 32 5.9 0.06 O 4 26.6 0.24 O
gcd_3+newton_1_4 1 0 39.9 0.09 O 7.4 0.07 O 35 77.6 0.10 O 4 102.8 0.25 O
gcd_3+newton_3_7 1 0 126.6 0.22 O 61.6 0.19 O 47 229.6 0.38 O 4 195.8 0.44 O
email_spec4

8
2 0 3.9 0.18 O 8.0 0.36 O 0 7.6 0.36 O 6 172.2 1.95 O

email_spec7 2 0 5.2 0.22 O 8.9 0.38 O 0 8.5 0.38 O 7 281.1 1.93 O
email_spec27 2 0 61.7 0.32 O 31.3 0.50 O 0 30.7 0.50 O 3 >900s 1.37 X
Fibonacci04 1 1 0 0.1 0.01 O 3.5 0.26 O 0 3.3 0.26 O 0 1.1 0.16 O
Fibonacci05 1 0 4.2 0.29 O 3.8 0.28 O 0 3.5 0.29 O 0 1.1 0.15 O
floppy_simpl3.cil-1 8 8 0 0.2 0.01 O 0.1 0.01 O 0 0.1 0.01 O 2 2.3 0.25 O
floppy_simpl4.cil-1 8 0 0.8 0.02 O 0.2 0.03 O 0 0.2 0.03 O 2 2.7 0.25 O
pals_floodmax.5.1

2
2 1 3.0 0.06 O 0.9 0.07 O 0 0.9 0.07 O 5 413.7 0.85 O

pals_floodmax.5.4-10 2 3 110.8 0.06 X 1.1 0.07 O 0 1.0 0.07 O 6 433.8 0.74 O
pals_floodmax.5.4 2 3 8.2 0.06 O 2.0 0.07 O 0 1.9 0.07 O 6 >900s 0.80 X
token_ring.01.cil-2

1
1 0 2.1 0.12 O 1.4 0.11 O 0 1.3 0.11 O 3 2.1 0.15 O

token_ring.05.cil-2 1 0 7.2 0.35 O 5.5 0.34 O 0 5.1 0.35 O 3 9.2 0.26 O
token_ring.14.cil 1 0 32.9 1.06 O 34.4 1.07 O 0 31.9 1.07 O 2 >900s 0.44 X

Comparison with PBEAR on time and memory usage1 0.47x 1.24x - - 1.09x 1.31x - - 4.45x 3.27x -
1 We only compared the time usage for the ’O’ properties. Timeouts (>900s) are not factored into the comparison.

5.4.1 Results on Benchmark Programs. Table 2 shows the falsification result on 16 SV-COMP
programs8 using PBEAR, CBMC, CBMC-refine, and CPAchecker. From left to right, the target
program (𝑃 ), the number of auxiliary functions in 𝑃 (|𝐹 |), and the name of each tool are listed. Each
column under the tool name represents the number of selected auxiliary functions (|𝑆 ′ |, only for
PBEAR) using the scoring function, the number of refinements (#R) performed, time usage for
falsification (𝑇 ) in seconds, peak memory usage (𝑀) in GBytes, and the result of falsification (𝑉 ?,
where ’O’ indicates a true alarm found, and ’X’ indicates unknown).

Overall, CBMC performed best for these 16 programs as it was the fastest in finding all true
alarms. All the other tools were less efficient than CBMC because their overhead for refinement
8In certain instances, names are shortened. For example, "email_spec" corresponds to "email_spec_productSimulator.cil",
and "pals_floodmax" was shortened by omitting post-fixes such as ".ufo.UNBOUNDED.pals" and ".ufo.BOUNDED-10.pals".
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outweighed the benefits of abstraction. PBEAR used the least amount of memory among all the tools
but failed to identify a true alarm for pals_floodmax.5.4-10 after three iterations of FS refinements
and falsification attempts up to bound 𝑘 = 1000 without finding any violations. This is an example
showing that PBEAR may always not able to find true alarms due to the use of PBE-based FSs which
is neither sound nor complete. We note that the experiment using CPAchecker was conducted using
the -predicateAnalysis option instead of the -svcomp22 option because the former performed
faster in finding true alarms. If we had used the latter option, it would have falsified two more
programs but would have been 1.3 times slower with 2.9 times more memory consumption.

Table 3. Property falsification results on the three embedded software programs.

𝑃 |𝐹 | 𝜓 𝑘
PBEAR CBMC CBMC-refine CPAchecker

|𝑆 ′ | #R 𝑇 (s) 𝑀(GB) 𝑉 ? 𝑇 (s) 𝑀(GB) 𝑉 ? #R 𝑇 (s) 𝑀(GB) 𝑉 ? #R 𝑇 (s) 𝑀(GB) 𝑉 ?

P1 5

𝜓11 60 1 0 2,198 23.4 O 11,595 26.0 O 726 2,657 24.1 O 49 >3d 33.9 X
𝜓12 110 1 0 33,915 70.2 O 13,976 OOM X 1,536 29,822 75.2 O 238 >3d 6.5 X
𝜓13 60 1 0 2,674 23.3 O 11,739 25.9 O 591 2,517 24.1 O 50 >3d 25.1 X
𝜓14 50 5 1 1,605 14.3 O 2,994 15.8 O 289 875 14.9 O 49 >3d 9.7 X
𝜓15 70 1 0 3,859 32.3 O 27,675 36.5 O 780 4,998 33.7 O 230 >3d 13.6 X
𝜓16 120 1 0 47,591 80.0 O 14,741 OOM X 0 36,574 OOM X 248 >3d 15.9 X
𝜓17 50 1 0 648 14.4 O 2,934 15.9 O 288 954 14.9 O 51 >3d 9.1 X
𝜓18 60 1 0 2,273 23.3 O 8,330 25.8 O 588 2,391 24.1 O 64 >3d 70.5 X
𝜓19 110 1 0 50,982 70.3 O 20,349 OOM X 1555 39,763 75.2 O 56 >3d OOM X

P2 3

𝜓21 310 3 0 1,533 4.4 O 22,682 66.7 O 7 23,183 65.8 O 426 >3d 8.3 X
𝜓22 610 3 30 39,091 12.4 O 30,056 OOM X 0 31,326 OOM X 418 >3d 7.1 X
𝜓23 610 3 27 40,881 13.9 O 29,205 OOM X 0 30,631 OOM X 418 >3d 6.7 X
𝜓24 610 3 19 >3d 26.0 X 105,882 OOM X 1 173,323 OOM X 68 >3d 2.8 X

P3 1 𝜓31 20 1 0 151 3.9 O 3,357 13.2 O 0 3,488 13.2 O 32 27 0.9 O
𝜓32 30 1 0 751 11.4 O 43,156 43.1 O 0 43,737 43.1 O 159 1,022 4.8 O

Comparison with PBEAR on time and memory usage1 8.57x 1.77x - - 1.53x 1.72x - - 1.16x 0.70x -
1 OOM means that a tool ran out of memory. We consider OOM as 80GB when comparing memory usage.

5.4.2 Results on Embedded Software. Table 3 shows the falsification results for the three embedded
software programs. Similar to Table 2, this table includes additional columns where𝜓 represents
properties, and 𝑘 denotes bounds for loop unwinding when a violation of𝜓 occurs. Compared to
the results on the SV-COMP benchmark, CBMC did not perform well on these three programs,
with falsification time being 8.57 times longer and 6 OOM occurrences. This means that the
characteristics of embedded software and their properties require abstraction and refinement.
CBMC-refine outperformed PBEAR in P1, as the falsification time was 1.17 times faster after 6,353
refinements. However, it still suffered from scalability issues. OOM occurred for properties 𝜓16,
𝜓22,𝜓23, and𝜓24. Overall, CBMC-refine took 1.53 times more falsification time and 1.75 times more
memory compared to PBEAR. CPAchecker used less memory compared to PBEAR (0.7 times).
However, it found only 2 true alarms after a total of 2,556 refinements.
On average, PBEAR took 16,297 seconds and 28GB to find each true alarm (except for 𝜓24).

The fastest case among them was 𝜓31, where by replacing independent function calls with non-
deterministic FS calls. However,𝜓24 took more than 3 days of falsification time without finding a
true alarm using PBEAR, even though the number of refinements was smaller than 𝜓22 and 𝜓23.
This is because of the complexity of the property itself as shown in Table 1;𝜓24 requires to explore
all the execution paths making the elevator reach the floor, pick up passengers, and then reach
another floor where any FLOOR_BUTTON is pressed, to reason about it anyways, whereas𝜓22 only
requires the elevator to reach the floor to which the UP_BUTTON is pressed. Due to this complexity,
none of the tools were able to falsify this property.
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5.5 RQ2. Effectiveness of Improved CEGAR Process

Table 4. # of refinements, time usage (seconds), and # of detected
true alarms of PBEAR and PBEARb.

𝑃 and𝜓 PBEAR PBEARb
#R 𝑇 (s) 𝑉 ? #R 𝑇 (s) 𝑉 ?

gcd_1+newton_1_6 2 79.0 O 38 225.4 O
Fibonacci05 0 4.2 O 0 0.1 X
floppy_simpl4.cil-1 0 0.8 O 0 0.2 X
pals_floodmax.5.1 1 3.0 O 1 1.7 O
pals_floodmax.5.4-10 3 110.8 X 3 102.5 X
pals_floodmax.5.4 3 8.2 O 3 3.8 O

𝑃 𝜓 #R 𝑇 (s) 𝑉 ? #R 𝑇 (s) 𝑉 ?

P1

𝜓11 0 2,198 O 3 7,004 O
𝜓12 0 33,915 O 6 175,218 O
𝜓13 0 2,674 O 15 24,920 O
𝜓14 1 1,605 O 1 1,637 O
𝜓16 0 47,591 O 2 93,761 X
𝜓17 0 648 O 53 38,714 O
𝜓18 0 2,273 O 7 11,900 O
𝜓19 0 50,982 O 2 92,889 O

P2
𝜓22 30 39,091 O 30 36,681 O
𝜓23 27 40,881 O 27 40,762 O
𝜓24 19 >3d X 19 >3d X

P3 𝜓31 0 151 O 0 155 X
𝜓32 0 751 O 0 750 X

Table 5. # of refinements, time usage (seconds), and # of detected
true alarms of PBEAR and PBEAR-cov.

𝑃 and𝜓 PBEAR PBEAR-cov
|𝑆 ′ | #R 𝑇 (s) 𝑉 ? |𝑆 ′ | #R 𝑇 (s) 𝑉 ?

gcd_1+newton_1_6 1 2 79.0 O 1 1 9.7 O
gcd_3+newton_1_4 1 0 39.9 O 1 0 16.7 O
gcd_3+newton_3_7 1 0 126.6 O 1 0 355.4 O
email_spec4 2 0 3.9 O 2 0 4.0 O
email_spec7 2 0 5.2 O 2 0 5.2 O
email_spec27 2 0 61.7 O 2 0 62.4 O
Fibonacci04 1 0 0.1 O 1 0 0.1 O
Fibonacci05 1 0 4.2 O 1 0 4.2 O
pals_floodmax.5.1 2 1 3.0 O 2 1 >900s X
pals_floodmax.5.4-10 2 3 110.8 X 2 1 98.7 X
pals_floodmax.5.4 2 3 8.2 O 2 1 >900s X

𝑃 𝜓 |𝑆 ′ | #R 𝑇 (s) 𝑉 ? |𝑆 ′ | #R 𝑇 (s) 𝑉 ?

P1

𝜓11 1 0 2,198 O 2 0 3036 O
𝜓12 1 0 33,915 O 2 0 15,917 X
𝜓13 1 0 2,674 O 2 0 1,786 O
𝜓14 5 1 1,605 O 6 3 2,310 O
𝜓15 1 0 3,859 O 2 0 5,089 O
𝜓16 1 0 47,591 O 2 0 2,739 X
𝜓17 1 0 648 O 2 0 633 O
𝜓18 1 0 2,273 O 2 0 2,104 O
𝜓19 1 0 50,982 O 2 0 2,747 X

P2

𝜓21 3 0 1,533 O 3 30 26,492 O
𝜓22 3 30 39,091 O 3 33 71,196 O
𝜓23 3 27 40,881 O 3 3 12,382 O
𝜓24 3 19 >3d X 3 13 180,643 O

Table 4 presents a comparison between PBEAR, with symbolic alarm filtering and our improved
PBE-based FS refinement with SAT solving, and PBEARb, with the baseline approach for concrete
alarm filtering and PBE-based FS refinement. We omitted 𝜓15, 𝜓21, and several benchmarks in
SV-COMP where symbolic alarm filtering was not conducted. Overall, PBEAR found 17 true alarms
considerably faster with a lower number of refinements, whereas PBEARb found only 12.

In P1, PBEARb required additional 88 refinements to falsify 9 properties (and failed to falsify𝜓16
due to the OOM issue after two refinements) compared to PBEAR, requiring an extra 71.7 hours. In
the case of gcd_1+newton_1_6, PBEARb explored the same infeasible path during 38 refinement
iterations, whereas PBEAR conducted only two refinements. In the case of Fibonacci05, PBEARb

was unable to refine a FS due to an impractically large input value, leading to refinement failure
with the overflow of its output value. In the cases of floppy_simpl4.cil-1 and 𝜓31 and 𝜓32 in P3,
where independent function calls were replaced with non-deterministic FSs, we did not refine false
alarms identified through concrete alarm filtering in PBEARb as it is obvious that it would take a
long time to iteratively refine these FSs with concrete counterexamples.

5.6 RQ3. Effectiveness of Using Output Coverage for FS Synthesis and Selection
Table 5 shows the impact of using output coverage in determining falsification ability by comparing
the results with (PBEAR) and without (PBEAR-cov) using output coverage in the FS evaluation. We
omitted P3 and two benchmarks in SV-COMP that did not use PBE-based FSs, but non-deterministic
FSs. Overall, PBEAR found two more true alarms than PBEAR-cov with almost no overhead for the
SV-COMP benchmark programs, three more true alarms for P1, but missed one true alarm for P2.

In the pals_floodmax.XX category, for example, a function commonly used in that category was
synthesized and replaced with a FS with 98.95% accuracy and 100% output coverage by PBEAR,
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while PBEAR-cov synthesized the same function with 99.66% accuracy and 50% output coverage.
In the case of P1, a FS for the function fisqrt, which was not selected by PBEAR due to its low
output coverage (21.74%), was selected by PBEAR-cov, resulting in missing true alarms for 𝜓12,
𝜓16, and𝜓19. In the case of P2, however, PBEAR-cov found a true alarm after only 13 refinements,
whereas PBEAR encountered timeouts. PBEAR-cov did not explicitly consider output coverage, but
it coincidentally achieved 100% output coverage in this case. Thus, with the same output coverage,
it could achieve better effectiveness by improving accuracy solely without controlling the number
of I/O constraints.

5.7 Discussion
As PBEAR is specialized in abstracting auxiliary functions, its application to SV-COMP benchmarks
did not show better performance compared to that of CBMC; It could not find a true alarm for the
pals_floodmax.5.4-10 benchmark in Table 2 and showed slower performance than CBMC, the fastest
on those benchmark programs, for most of the cases. This shows that our approach implemented
in PBEAR can be an overhead for checking (relatively) small-scale programs with simple properties.
On the other hand, as shown with complex embedded software programs in Table 3, PBEAR solved
all but one property, whereas CBMC encountered memory issues, and CPAchecker did not finish
within 3 days in most cases. It shows that existing best-performing model checking tools are not
quite suitable for falsifying timing-related safety properties typically found in embedded software.
The empirical results indicate that our approach successfully supports our hypothesis, which
explores the potential of PBE-based selective abstraction in achieving a well-balanced combination
of falsification precision and efficiency.
Our approach has a couple of drawbacks. Firstly, our FS selection strategy is exponential, as it

involves selecting the best subset by scoring each subset of FSs (Section 3.3.2). Though this issue was
not prominent as our target programs used in experiments contain only 1 to 8 auxiliary functions,
it could be a major performance bottleneck for more complex systems. This may be addressed by
introducing heuristics for limiting the maximum number of selected FSs. Secondly, our approach
has to limit its applicability to auxiliary functions that do not contain float-typed or dynamic
input/output variables due to the limitation of state-of-the-art PBE techniques. We may apply more
aggressive data abstractions to broaden the applicability of PBEAR; For example, dynamic objects
can be abstracted to static objects and flattened out before applying PBE. Float-typed auxiliary
functions can be abstracted using well-known abstraction techniques [8, 14]. A simple example is
abstracting a statement if(x > y) into if(B), where B is a Boolean abstraction of (x > y), x and y
are float-typed input variables, but the output variable should be integer-typed.
The performance of PBEAR depends on how we use the PBE tool, which is quite sensitive to

the choice of I/O constraints. While PBEAR aims to optimize the performance of the PBE tool by
balancing the number of I/O constraints during iterative synthesis, it may not always produce the
best solution. In Table 5, PBEAR-cov was able to falsify𝜓24 because it does not attempt to control
the number of I/O constraints, enabling higher accuracy. In contrast, PBEAR failed to achieve the
same result. However, increasing I/O constraints also raises complexity, as illustrated in the failure
of PBEARb in Table 4 for𝜓16. Thus, there is a room for improvements by identifying more effective
I/O constraint selection strategies.

5.8 Threats to Validity
Constructing FSs using PBE produces neither sound nor complete abstractions. Therefore, there
is no guarantee that our approach will succeed in falsification even when faults exist in a target
program. Additionally, the metrics proposed for FS, including accuracy, output coverage, and
complexity, do not always ensure falsification performance. Depending on the searching heuristics,
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a model checker may find violations more quickly, influenced by luck, even if the complexity of
FS is higher than that of the original function. Similarly, accuracy only indicates a possibility of
returning more precise output values.
There may be a question regarding the generality of our approach as the experiments were

performed on a limited number of benchmarks. We do not claim that PBEAR works better than
existing approaches in general. However, as it is specifically aimed, the experimental results show
the potential benefits of our approach for embedded software, where multiple auxiliary functions
exist with complex temporal properties. Turning to internal validity, the possibility of errors within
our implementation exists. To address this threat, we manually checked each step of the PBEAR
process. It is also possible that our experimental setup was not optimal, e.g., we might not have
used the best options for other tools. We tried to find the best options by communicating with tool
developers.

6 RELATEDWORK
6.1 Abstraction using Function Summaries
FSs have been used in various contexts, e.g., in static analysis [6], model checking [2, 52], and
concolic testing [33, 41]. For BMC, FunFrog [52] and HiFrog [2] construct over-approximate FSs for
target functions in a SSA form and iteratively refine them using counterexamples to reduce false
alarms. SMART [33] uses FSs in the context of efficient dynamic test generation. It constructs an
under-approximate FS by collecting path formulas in pre- and post-conditions after each dynamic
execution for a function. FOCAL [41] enhances the approach by introducing counterexample-
guided refinements in the context of extended unit testing. Our approach is in the same line of
these approaches but uses PBE for constructing function summaries and with details on how to
select the target functions to be abstracted.
BESTER [47] migrated from all-or-nothing paradigm, whether PBE either is successful (i.e.,

satisfying all given I/O constraints) or failed, to best-effort paradigm, which presents a ranked list of
candidate programs that satisfy some part of I/O constraints for the better user interaction. BESTER
is similar to PBEAR w.r.t considering the number of satisfied I/O examples (i.e., accuracy) and
program size (i.e., complexity) for ranking the best result. However, PBEAR additionally considers
output coverage for effective property falsification.

6.2 Selective Abstraction
The notion of selective abstraction has been used in various approaches; Bjesse [18] performed
selective abstraction of memories for word-level model checking. Armando et. al [7] abstracts only
for arrays in C programs. Yin et al. [56] proposed BMC for concurrent C programs by abstracting
only scheduling constraints. Oil-CEGAR [38] is a CEGAR-based approach for embedded software
with an OS model program to reduce the non-determinism of multitasking. It performs selective
predicate abstraction, abstracting only those statements that use or define global variables. These
approaches uniformly apply selective abstractions to the target program, while PBEAR explicitly
selects functions to be abstracted using evaluation criteria.

The approach by Sato et al. [51] is the closest to ours as it performs predicate abstraction to a set
of functions that have cyclic function calls in the functional language ML. In their experiments, out
of 18 programs, the traditional predicate abstraction required 59 refinements, whereas selective
predicate abstraction required just 28 refinements. PBEAR also selectively abstracts functions, but
with different criteria and using PBE.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 14. Publication date: July 2024.



14:20 Yoel Kim and Yunja Choi

6.3 Compositional Model Checking
Compositional model checking [26] reduces verification complexity by decomposing a target
system into several components and verifying each component separately, instead of verifying the
entire system. Assume-guarantee reasoning [1, 32, 46] enables it more efficiently by generating
assumptions about each component’s environment. Our approach can be applied in this context by
synthesizing auxiliary components using PBE instead of generating assumptions.

Conditional model checking [15], a variant of compositional model checking, reasons about a con-
dition𝜓 such that a program satisfies a property under𝜓 . This enables partial verification, as some
parts of the program that have already been verified under condition𝜓 are not explored again in the
next model checking process. This approach has been further developed with verification strategy
selection [12], cooperation of different verification tools [16], and decomposition of verification
tasks [13]. These approaches are useful for finding more efficient strategies during verification
process, while our approach focuses more on engineering aspects for efficient falsification using
bounded model checking through PBE-based selective abstraction and refinement.

7 CONCLUSION AND FUTUREWORK
We have presented PBEAR, a novel property falsification technique using PBE-based function
summaries for selective abstraction and refinement. PBEAR abstracts auxiliary functions so that
they can be replaced with FSs, while leaving the main control logic so that we can easily localize
alarm filtering and refinement to FSs. It synthesizes FSs using the PBE solver, filters true/false
alarms symbolically, and refines PBE-based FSs with SAT solving for efficient property falsification.
Our experiments showed that PBEAR outperformed the bounded model checking (CBMC), SAT-
based abstraction (CBMC-refine), and predicate abstraction (CPAchecker) techniques in property
falsification on three embedded software programs written in C. To our best knowledge, it is the
first work utilizing PBE for abstraction and refinement.
Though our experiments were conducted only on the source code level, our approach can

be generalized for falsifying embedded software systems with distributed architectures or with
multiple external black-box components, such as third parties or platform-dependent hardware,
which can be automatically abstracted using PBE as long as we can collect the I/O examples for
those components. Believing that it is far more realistic to abstract using PBE than to assume the
existence of specifications for external components, we plan to further investigate the applicability
of PBEAR to the composition of embedded software components. We also believe that our approach
is not only applicable to embedded software but is also likely to be suitable for programs in other
domains with control-oriented structures and auxiliary functions.

DATA AVAILABILITY
PBEAR (Docker image) is publicly available at [39] for reproduction. All experimental results are
also publicly available at https://figshare.com/projects/PBEAR/188904.
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